A generalized multiscale finite element method for poroelasticity problems II: Nonlinear coupling

نویسندگان

  • Donald L. Brown
  • Maria Vasilyeva
چکیده

In this paper, we consider the numerical solution of some nonlinear poroelasticity problems that are of Biot type and develop a general algorithm for solving nonlinear coupled systems. We discuss the difficulties associated with flow and mechanics in heterogenous media with nonlinear coupling. The central issue being how to handle the nonlinearities and the multiscale scale nature of the media. To compute an efficient numerical solution we develop and implement a Generalized Multiscale Finite Element Method (GMsFEM) that solves nonlinear problems on a coarse grid by constructing local multiscale basis functions and treating part of the nonlinearity locally as a parametric value. After linearization with a Picard Iteration, the procedure begins with construction of multiscale bases for both displacement and pressure in each coarse block by treating the staggered nonlinearity as a parametric value. Using a snapshot space and local spectral problems, we construct an offline basis of reduced dimension. From here an online, parametric dependent, space is constructed. Finally, after multiplying by a multiscale partitions of unity, the multiscale basis is constructed and the coarse grid problem then can be solved for arbitrary forcing and boundary conditions. We implement this algorithm on a geometry with a linear and nonlinear pressure dependent permeability field and compute error between the multiscale solution with the fine-scale solutions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Generalized Multiscale Finite Element Method for poroelasticity problems I: Linear problems

In this paper, we consider the numerical solution of poroelasticity problems that are of Biot type and develop a general algorithm for solving coupled systems. We discuss the challenges associated with mechanics and flow problems in heterogeneous media. The two primary issues being the multiscale nature of the media and the solutions of the fluid and mechanics variables traditionally developed ...

متن کامل

Coupling Nonlinear Element Free Galerkin and Linear Galerkin Finite Volume Solver for 2D Modeling of Local Plasticity in Structural Material

This paper introduces a computational strategy to collaboratively develop the Galerkin Finite Volume Method (GFVM) as one of the most straightforward and efficient explicit numerical methods to solve structural problems encountering material nonlinearity in a small limited area, while the remainder of the domain represents a linear elastic behavior. In this regard, the Element Free Galerkin met...

متن کامل

A Newton-scheme Framework for Multiscale Methods for Nonlinear Elliptic Homogenization Problems∗

In this contribution, we present a very general framework for formulating multiscale methods for nonlinear elliptic homogenization problems. The framework is based on a very general coupling of one macroscopic equation with several localized fine-scale problems. In particular, we recover the Heterogeneous Multiscale Method (HMM), the Multiscale Finite Element Method (MsFEM) and the Variational ...

متن کامل

Reduced order modeling techniques for numerical homogenization methods applied to linear and nonlinear multiscale problems

The characteristic of effective properties of physical processes in heterogeneous media is a basic modeling and computational problem for many applications. As standard numerical discretization of such multiscale problems (e.g. with classical finite element method (FEM)) is often computationally prohibitive, there is a need for a novel computational algorithm able to capture the effective behav...

متن کامل

Finite element heterogeneous multiscale method for nonlinear monotone parabolic homogenization problems

We propose a multiscale method based on a finite element heterogeneous multiscale method (in space) and the implicit Euler integrator (in time) to solve nonlinear monotone parabolic problems with multiple scales due to spatial heterogeneities varying rapidly at a microscopic scale. The multiscale method approximates the homogenized solution at computational cost independent of the small scale b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Computational Applied Mathematics

دوره 297  شماره 

صفحات  -

تاریخ انتشار 2016